4^2x-3=1/64

Simple and best practice solution for 4^2x-3=1/64 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4^2x-3=1/64 equation:



4^2x-3=1/64
We move all terms to the left:
4^2x-3-(1/64)=0
We add all the numbers together, and all the variables
4^2x-3-(+1/64)=0
We get rid of parentheses
4^2x-3-1/64=0
We multiply all the terms by the denominator
4^2x*64-1-3*64=0
We add all the numbers together, and all the variables
4^2x*64-193=0
Wy multiply elements
256x^2-193=0
a = 256; b = 0; c = -193;
Δ = b2-4ac
Δ = 02-4·256·(-193)
Δ = 197632
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{197632}=\sqrt{1024*193}=\sqrt{1024}*\sqrt{193}=32\sqrt{193}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{193}}{2*256}=\frac{0-32\sqrt{193}}{512} =-\frac{32\sqrt{193}}{512} =-\frac{\sqrt{193}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{193}}{2*256}=\frac{0+32\sqrt{193}}{512} =\frac{32\sqrt{193}}{512} =\frac{\sqrt{193}}{16} $

See similar equations:

| x=2/(3x+8) | | -9(u-5)=7u-19 | | 21x-25x=4 | | 2(w+3)-8w=-6 | | 6x+5=6x-15 | | 5x+25=4×+30 | | x²+34x+64=0 | | 400/1000=x/750 | | (x-1)4+3x=20(5-9)+3x+4 | | 3x+9=2×+12 | | x-5,7=0,208x | | 325x^2+200x-125=0 | | -3=-6+c | | x-20,20=0,0208x | | 30x+50=30 | | 3p+35/2=30 | | x²-9x-42=0 | | 2x÷7+2=0 | | (k+1)^2-(k-1)^4=4k | | 3(4x-2)=4(2x+3) | | 197-5*x/3=37 | | 5y+2y=700 | | 4z+5=7z-39 | | 5(x-3)=2(2x+4) | | 2a-a/3=a+2 | | 2,6-5y=8(3/2y-0,1) | | 2,6-5y=8(3/2y-0,1 | | C+5=2c+3 | | X/2-x=x-6 | | 180=(2x+36) | | s^2+6s+30=0 | | (340+x)/5=70 |

Equations solver categories